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PREAMPLIFIER

For semiconductor detectors or ionisation chambers, the charge deposited in the 
detector

Q = (q * E) / where E is the energy deposited in the detector and     
is the average energy required to produce an ion-
pair.

q  = 1.6 * 10-19 Coulomb  electron charge

E ~ MeV for-rays and 10- 100 MeV for energetic ions

 ~ 3 eV for semiconductors, and 30 eV for gas ionisation counters.

input signal : V = Q/C  where Q is charge collected by the detector and 

C is the total capacitance ( detector + preamp).

Since the capacitance is typically 10 - 100 pF, the signal level is ~ mV only. To 
minimise the capacitance associated with a long cable (  101 pF/m for RG58 and 44 
pF/m for RG62 cable) the preamp should be located close to the detector.

A preamplifier has to preserve

 maximum signal to noise ratio
 minimum change in shaping 
 information content in the signal ( i.e. energy & timing)

Preamplifiers are mainly of two types (i) voltage sensitive & (ii) current sensitive. The
first is used for timing applications or for photomultiplier signals. The second is used
when the detector capacitance may vary with time degrading output resolution.

The rise time of the voltage pulse is affected by (i) charge collection time in
the detector and (ii) rise time of the amplification section. The first may vary from ~
ns for small detectors to ~ 500 ns for large coaxial Ge detectors. The collection time
depends on the size of the detector, electric filed and electron/hole mobility.

For a detector in which an average charge of Q is deposited per event, a count
rate of N particles/sec constitutes an average current of I = QN. In the absence of any
restorative mechanism, the gate voltage will rise towards the HV. In charge sensitive
preamp with resistive feedback, a resistance Rf is placed in parallel with the feedback
capacitance Cf to allow the output signal to decay with a time constant  = Rf Cf .
Typical values of  is ~ 50 sec. This resistance however contributes to noise and for
extremely  low  noise  application  transistor  feedback  or  opto-feedback  circuits  are
employed. The output signal of a charge sensitive preamp is Vout = -Q/Cf  where Cf is
the feedback capacitance.



 

Fig 1: CHARGE SENSITIVE PREAMP

Fig 2: VOLTAGE SENSITIVE PREAMP

The  gain stage of the  preamplifier must have large gain in order provide a
large  dynamic  capacitance  to  the  input  stage.  For  a  gain  K,  the  effective  input
capacitance  with feedback is  KCf  which  must be large compared to  the detector
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capacitance.  In  order  to  provide  a  fast  rise  time  of  the  output  pulse,  the  gain-
bandwidth product of the amplifier should also be large. The rise time ( 10% - 90%)
of the output pulse is :

 

where  h is the angular frequency where the gain falls by 3 db. For detectors with
large input capacitance, the rise time is adversely affected.

A typical design of the preamplifier is shown in fig 3. To reduce the Miller
effect in gate-drain capacitance, a cascode connection of a common base transistor
configuration is used.  The constant current source at the emitter side may be replaced
by  a  resistance  or  large  inductance.  The  buffer  with  high  input  and  low  output
impedance  is  made  up  of  a  npn-pnp  transistor  emitter  follower  combination.  To
reduce cross-over distortion, an identical  pair of npn-pnp transistors are configured
as diodes to bias the two halves of the emitter follower [ see, for example, the circuit
of PA422 in  R. Bassini et al, Nucl. Instr. Meth. A305(1991)449 ] .   To protect the
gate of the input FET from breakdown if the gate voltage swing is too high, a reverse
biased FET configured as a diode is connected to the gate. 

Fig 3: Charge sensitive preamp
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NOISE IN PREAMPS

The  main sources of noise in a preamplifier comes from its input where the
signal levels are at their lowest. Three different sources of noise exist (i) thermal (ii)
shot and (iii) flicker noise.

Parallel noise ( Step Noise)

Let us first consider the noise sources that are shunted by the input capacitance
of the preamp + detector combination ( fig 4). Thermal noise is associated with
any resistive element and is the result of the random thermal motion of electrons in
the conducting material. The r.m.s. value of the noise is:

Vp
2 = 4kTRf  where k is the Boltzmann constant ( = 8.62 . 10-5 eV/K) and

f is the frequency bandwidth.  Normally the resistance is in parallel  to the signal
source ( Rf and RHV in fig 1)  so that the corresponding current noise is:

Ip
2 = 4kTf / R . As a result, both  the feedback resistor Rf and the biasing

resistor  RHV should  be  high  for  low noise  applications.  This  noise  source  acts  in
parallel to the input capacitance ( Cd + Cin + Cf) of the detector + preamp combination.

In a semiconductor detector at room temperature, the leakage current is also a source
of noise:

Ip
2 = 2q Id f where Id is the leakage current of the detector. The total parallel

noise current is:

 Ip
2 = ( 2q Id + 4kT/Req) f 

where Req is the parallel combination of all shunting resistances.

The parallel noise is also known as step noise as due to the integrating effect of the
capacitance, it appears as a series of steps in a staircase.

Series Noise ( Delta Noise)

Unlike the step noise which is generated mainly external to the preamplifier,
the  FET itself  contributes  to  a  white  noise.  This  noise  comes  in  series  with  the
detector signal and is also known as delta noise as it corresponds to bursts of pulses
of very short duration.

Shot noise exists in a BJT ( Transistor)  because the emission of electrons and
holes across a pn junction is random in nature. It is expressed by :

Is
2 = 2qIe f where q is the electronic charge and Ie is the collector current.

To obtain an equivalent input voltage source  Vs  , one can calculate the effect of the
base voltage on the collector current Ic :

Vs = Ic/gm where gm   is the transconductance of the transistor.



This gives rise to a shot noise Vn
2 = 4kTf ( rx + 1/2 gm)  for a preamplifier with BJT

front end where rx is the base resistance of the transistor.

For a FET, there is no shot noise, but the resistive channel material gives rise
to a white thermal noise source: 

Vs
2 = 4kTf (0.7/gm ) .

The contributions from the different noise sources depend on whether they are
in series or in parallel with the signal. The biasing resistance, feedback resistance and
leakage current contributions are in parallel to the signal while the contribution from
the input BJT/FET is  in series. The input signal and the parallel noise are shunted by
the input capacitance of the detector / FET combination.

The input detector signal and the parallel  noise sources are shunted by the
input admittancc YD = j Ctiotal   of the detector & FET combination. The series noise (
or delta noise) contribution can therefore be written as an input current noise source: 

I
2 = 4kT ( Ctotal )2f /gm   

where  is  0.5  or  0.7  depending  on  whether  it  is  BJT  or  FET.  The  extra  2

dependence in the delta noise contribution implies that its effect is more important at
high frequencies, corresponding to short sampling times. 

In addition to the above two main sources of noise, most electronic devices
produce a flick noise at low frequency  f/f which is of importance only at very low
frequencies. This is more important for MOSFETs as compared to JFETs. In addition,
there is noise contribution due to recombination of traps present in the gate region.
For Si-based FETs, the recombination noise contribution is minimum at around 100 -
140 Kelvin. The total noise contribution is obtained  by adding the individual noise
contributions in quadrature.

 

   Fig 4 : Noise sources in a preamplifier

The noise contributions in the above case have been calculated in the absence
of  any  feedback.  It  can  be  shown  that  in  the  presence  of  a  further  noise-less
amplification stage,  both signal and the noise are equally affected. Consequently the
signal to noise ratio remain unaffected by feedback. It is therefore desirable to always
express the noise in terms of an effective input signal. The equivalent noise charge
(ENC) is obtained by integrating the noise current over the time domain. Since the
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noise term depends explicitly depends on the band width f, the signal to noise ratio
can be improved by  optimising the processing time.

Fig 5 shows the complete signal processing chain for a passive time-invariant
pulse shaper. Both the signal and the noise are processed by the same shaper in order
to achieve the best signal to noise ratio. The individual noise steps are processed in
the same way as the actual detector signal. ( ref: E.S. Goulding, Nucl. Instr. Meth.
100(1972)493 ]

Fig6. Amplifier shaping

Intuitive picture of the effect of the shaping time

A spectroscopic amplifier first differentiates the preamplifier signal to remove
the DC component and applies an active or passive integration to generate a pulse of a
few micro sec width and a flat top. A qualitative picture of the dependence of the
signal  and  noise  with  the  integration  time  can  be  obtained  by  integrating  all  the
information for a measurement time T. The effective bandwidth  f ~ 1/T and the
frequency domain of interest f ~ 1/T. We have then :

1) Signal out ~ T

2) r.m.s. Delta noise ~ T1/2 and

3) r.m.s. step noise ~ T3/2.

 

The above analysis indicates that the signal to noise ratio improves with the shaping
time for delta noise and deteriorates for step noise ( fig 5).
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where T is the shaping timed  A,B depend on the

shape of the output pulse. The total noise has a minimum value {AB}¼  when the two
noise  contributions  are  equal.  For  semiconductor  detectors,  this  corresponds  to  a
shaping time of  1- 10 sec depending on the leakage current of the detector. For low-
leakage detectors, the step noise contribution is small, and the delta noise is reduced
by applying a larger shaping time.

Fig 6. Noise in a typical detector as a function of integration time

Dependence of signal noise on pulse shaping

Let  us  consider  first  a  passive  (  time-invariant)  shaping  based on  CR-RC
combinations. Such a device would reduce the total bandwidth of the output signal
and  therefore  reduce  the  white  noise  contribution.  For  a  step  input,  the  shaper
produces an output pulse that rises above noise level, peaks at a timem and then
decreases back to noise level. The shape of the output pulse, corresponding to a step
input at t=0 is R(t) having a maximum value Rmax at t = m .

A step function has the  property u(t) = 0 for t < 0

1 for t  0 

The  normalised  pulse  shape  W(t)  =   R(t)/Rmax is  also  known  as  the  Weighting
function.

A step noise of unit magnitude happening at t=0 would produce  an output
R()  at a time t =  . Consequence a random sequence of noise step pulses happening
at all t < 0 hold produce a step noise ( adding all the noise components in quadrature)
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<STEP NOISE>2       

A  delta  noise  can  be  considered  as  the  time  derivative  of  a  step  function.
Consequently the delta noise is proportional to the time derivative of the output pulse
shape :

<DELTA NOISE>2      

The dependence of the signal-to-noise ratio on the pulse shaping is governed by the
parameters 

Step noise index <Ns
2>  =   / Rmax

2

and Delta Noise Index <N
2> =   / Rmax

2    The

entire effect of the pulse shaper on noise is contained in the  <Ns
2> and <N

2>. It also
appears that while the mean square step noise is proportional to the time scale of the
pulse shape, the mean square delta noise in inversely proportional to the time scale.
We can thus reduce the delta noise contribution by using a longer shaping time but
this would result in an increase in step noise. 

The product   [<Ns
2> <N

2>]¼ is dimensionless and is proportional  to the
minimum  r.m.s.  noise   when  the  shaping  time  is  optimised.  The  noise-limiting
properties  of    different  types  of  shaping  can  be   evaluated  by  comparing  the
corresponding figures of merit  [<Ns

2> <N
2>]¼  . 

The best noise performance is obtained for 'Cusp' shaping  where

x = t/ is a dimensionless parameter. This shape is however not suitable for pulse
processing as the recovery to baseline is very slow. The figures of merit for some
typical  shaping amplifiers  are tabulated below. This shows that  Gaussian shaping
gives a lower noise figure than CR-RC or CR-(RC)2 filtering.

Table I : Summary of noise indices for typical systems

Shaping Analytical
form

<Ns
2> <N

2> [<Ns
2> <N

2>]¼

Cusp e-|x| 1.0 1.0 1.0

CR-RC x.e -x 1.87 1.87 1.37

CR-(RC)2 x2 e -x 1.71 1.28 1.22

CR-RC-CR Bipolar 1.88

Gaussian exp(-x2/2) 1.12

7 pole x7 e7(1-x) 0.67 2.53 1.14



approx.

4 pole
approx.

x4 e4(1-x) 0.90 2.04 1.16

Triangular |1-x| 0.67 2.0 1.07

Gated int.
with

Gaussian
prefilter

TG = 2.5 0 2.07 1.47 1.32

The total noise contribution, in terms of keV units, is given by :

En = 2.35 /q [ ( q Id + 2kT/Req)<Ns
2> +  4kT  Ctotal 2/gm <N

2>

]
where  En  is the FWHM due to the electronic noise in eV,   is the mean energy
required to create one electron-hole pair in the detector and q is the electronic charge.



Selection of components in a preamplifier

Let  us  look  at  the  criteria  for  selection  of  various  components  used  in  a
preamplifier.  The  choice  is  dictated  by  various  conflicting  requirements  like  low
noise, high count rate capability, fast response and immunity to detector capacitance
variations.

Biasing Resistance

  In an ac coupled preamplifier, the biasing resistance is used to provide bias to
the  detector  which  is  blocked  by  the  coupling  capacitance  Cs.  Since  the  biasing
resistance is a source of step noise,  its value is governed by the leakage current of the
detector. For detectors of low leakage current ( < 1 nA), biasing resistances ~ 1 G

can  be  used  (cooled  semiconductor  detectors  and  ionisation  counters).  Resistance
values ~ 100 M are used for normal room temperature detectors.  For extremely
leaky detectors ( current > 1 A), the biasing resistance has to be reduced to 10 M . 

The coupling capacitance Cs  should have a value large compared to the input
capacitance of the preamp with feed back. The leakage current for this high voltage
capacitance should be < 1pA so that it does not contribute to noise. Typical value of
the coupling capacitance is 10nF with a voltage rating larger than the maximum bias
voltage.

For cooled detectors, the biasing resistor and the coupling capacitance can be
removed altogether by direct coupling. The detector is insulated from ground and the
output charge ( and leakage current) flows into the gate of the input FET ( fig 7). A
low pass RC filter is added in the high voltage side to eliminate the ripple from the
HV  supply.  Care  should  be  taken  to  apply  the  preamplifier  supply  first  before
applying high voltage.

Feedback Capacitance

The feedback capacitance dictates the gain of the charge sensitive loop. Its
value is typically 0.5 - 2 pF . It should be highly stable and contribute negligibly to
the input stray capacitance. 

To reduce stray capacitance, the feedback capacitance and the coupling capacitance
for the test input are generally formed on a PCB on which the gate of the FET is
mounted.



Fig 7. DC coupling of  detectors  

Feedback Resistance Rf

The feedback  resistance  has  three  important  functions  (i)  it  allows  a  slow
recovery of the step pulse to zero  (ii) provide gate bias and (iii) for direct coupled
preamplifiers, the current path for the detector leakage current and/or electron-hole
current due to energy deposited in the detector. It also acts as a source of step noise.
Typical value of the feedback resistance  is 100 M - 1 G. 

At high count rates, the current flowing through the feedback resistor would
cause  a  DC shift  of  the  operating  point  of  the  FET  gate  voltage,  and  limit  the
maximum deposited energy that can be handled by the preamplifier. For an energy
deposition rate of 2.105 MeV/sec, the electron-hole current is  (2.1011 /3 )* 1.6 . 10-19 =
10-8 A producing a voltage drop of   10V across a 1 Gfeedback resistance. The
energy rate can be increased substantially by reducing the feedback resistance with a
corresponding increase in noise. The table below shows the increase of noise as the
feedback resistance is decreased . The feedback resistance also dictates the decay time
CfRf of the output wave form. Resistances with very value ( > 2 G) have poor high
frequency  response.  As  a  result,  the  decay  time  of  the  resultant  step  signal  has
multiple  time  constants  which  would  be  difficult  to  compensate  using  pole-zero
technique. Other methods of  gate bias control would be preferred for low noise or
high charge rate applications. 
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Table 2 : variation of detector noise with feedback resistance

Resistor
Value

122 keV 1332 keV

2.0  G 1.00 keV

1.0  G 1.81 keV

0.5  G 1.08 keV 1.93 keV

0.2  G 1.25 keV 2.13 keV

The  resistive  feedback  for  controlling  gate  voltage  is  known  as  dynamic
feedback.  For  ultra-low noise  applications,  it  is  necessary to  remove  the  resistive
feedback  path.  The  charge  impulses  (Qin)   from  the  detector  would  result  in  an
equivalent charge stored on the feedback capacitance Cf producing a step function Vo

= Qin / Cf . Subsequent impulses increase the output to a limit at which point  the
comparator  fires  an LED directed at  the gate  of the  FET( fig  8).  The light  pulse
momentarily shorts out the FET gate-source junction thus discharging Cf and resetting
the preamplifier.

During the discharge of Cf,  the preamplifier produces a large negative-going
output. An inhibit signal is generated by the processing circuitry to prevent collection
of data during the transient reset time. Due to the generation of light-activated surface
states in FET, the recovery  times are quite large, and pulsed-optical feedback is used
only for low count rate applications.

Fig 8: Pulsed Optical Feedback System

For  high  count-rate  applications  requiring  pulsed  feedback,  transistor  reset
preamplifiers are used . The feedback capacitor is discharged by a transistor switch
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connected to the FET input gate ( fig 9} .  This adds to some  capacitance and noise to
the input circuit, but this is acceptable in high count rate applications. Compared to
the RC preamplifier where a small value of feedback resistance is used to increase the
energy rate of the preamplifier, pulsed transistor rest amplifier would show less noise
during the time the transistor is off.

Fig 9. Transistor Reset Preamplifier

Selection of FET

For low noise applications, the choice of FET is critical. It should contribute
little to the noise and must have good high frequency response for timing applications.
It should have low flicker noise and generation-recombination noise due to the traps
present  in  the gate  depletion region of the FET.  Compared to  BJT and MOSFET
devices, JFET devices show lower noise and are almost universally used for the input
device in a low noise preamplifier. 

The input mean square shot noise is  (CD + Ciss)2/gm  where CD is the detector
capacitance and Ciss  is the input gate capacitance of the FET. For a given family of
FETs, the transconductance gm is proportional to the gate capacitance. ( This can be
seen  by  putting  two  FETs  in  parallel  with  their  gates  connected  together.  )  The
quantity (CD + Ciss)2/Ciss  is minimum when  CD  Ciss . [ For semiconductor detectors,
the capacitance is inversely proportional to the depletion depth having a value ~ 100
pFm./mm2 ]  One  should  therefore  use  a  selected  low  noise  FET  with  large
transconductance and input capacitance matching the detector capacitance. For cooled
detectors, to minimise thermal noise, the FET is also cooled to ~ 140 K where the
FET noise is minimum.  In addition, the feedback resistance and capacitance are also
cooled  and  kept  within  the  vacuum  enclosure  of  the  detector  to  minimise  stray
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capacitance.  For detectors with large capacitance,  a number of FETs can be wired
parallel to reduce the deterioration of  output noise with input capacitance. The table
below  shows  some  of  the  most  commonly  used  FETs  for  low  noise  with  their
characteristics:

FET gm  (mA/V) Ciss (pF)

2N5434 90 30

1SK146 40 75

2N4393 20 14

2N4416 6 4

2N6453 5 1

The FET noise is also dependent on drain current.. For the n-channel depletion FET
2N4416, the FET noise is minimum at ID ~ 8 mA, VDS ~ 10 V. Some preamplifiers
have option for adjusting the drain current for the best noise performance.

Operation Amplifier

The operation amplifier following the FET must have an open loop gain > 104

resulting in a dynamic  input capacitance of > 104 pF. The large feedback factor also
helps to keep the output linearity very high ( < .05% over the dynamic range with a
temperature stability of 0.005% /C)

The charge sensitivity of a preamplifier is determined mainly by the feedback
capacitance  Cf.  [  A  capacitance  of  1  pF  corresponds  to  an  output  pulse  of  50
mV/MeV]. For small signal application, this may be followed by a further gain stage
and pulse shaping to give a decay time of ~ 50 sec for the step output.

The rise time of the output energy pulse ( typically 10 - 50 nsec) depends on
the gain-bandwidth product of the operational amplifier and the detector capacitance.
Use of the   energy signal for timing applications would considerably degrade the
timing information from small size detectors with short collection times ( < 1 ns). The
low noise FETs used for the input to the preamplifier are suitable for amplification in
VHF/UHF band.  The subsequent gain stages have both limited bandwidth and large
propagation delay. As a result, the charge sensitive loop lags behind the voltage pulse
at the gate of the input FET. The resultant voltage spike at the drain of the fET has a
fast rise time. This fast signal can be amplified by a voltage amplifier and produce a
separate fast timing output ( < 3 ns rise time). For detectors with large capacitance,
the rise time is degraded  and some tuning of the rise time compensation circuit is
required to prevent oscillations at low input capacitance.

Output Gain



The output gain of the charge sensitive loop should be sufficiently large so
that the subsequent amplification stage does not significantly degrade the signal to
noise ratio. On the other hand, the signal level per pulse should be sufficiently low to
prevent saturation due to pileup of output step pulses. 

Due to the random spacing of the successive pulses, two or more pulses often
overlap  in  the  preamplifier  if  the  product  of pulse rate  * decay time is  not  small
compared to one. Provided the output voltage is within the linear operating range of
the preamplifier, the pileup usually does not cause any problem as the long tail may
be easily removed by CR differentiation at the main amplifier.

For large pulse heights, the preamplifier may saturate at even moderate rates
giving  rise  to  severe  pulse  height  distortion.  The  recommended  maximum output
height per pulse should be restricted to Vmax/4 where Vmax is the     linear operating
range  of  the  preamplifier.  A  preamp  of  lower  gain  and  faster  recovery  time  is
recommended for high energy deposit rate applications. Typical recommended gains
for different applications are tabulated below :

Application maximum Energy
(MeV)

gain ( mV/MeV)

X-rays 0.1 500

rays 5 100

E detectors 20 50

E Detectors 200 10

The following points should be taken into consideration in selecting and  using a
preamplifier :

1) Optimise for detector capacitance.

2) For  large  input  signals  or  very  high  count  rates,  make  sure  that  that  the
specifications of the preamplifier are not exceeded.

3) Always apply bias slowly letting the preamp to recover in between.

4) NEVER APPLY BIAS WITH THE PREAMPLIFIER POWER OFF.



NETWORK ANALYSIS

The frequency response of various networks like filters and feedback loops
can often be understood in terms of a frequency response F() where = 2f is the
angular frequency. The Fourier transform of a function is defined as:

If  Fin() and Fout() are the Fourier transforms of the input and output pulse shape,
the the gain of the network is given by

G() is in general complex, so that the network provides both gain and phase shift.

For a circuit containing resistance, inductance and capacitance,  the relation between
the input and output can be calculated using Kirchhoff's current and voltage Laws
using the complex impedances R,  jL and 1/jC respectively.

For  finding  the  pulse  response  for  a  network,  the  steady  state  solutions
obtained by using Fourier  analysis  are  not  adequate,  and one has  to  look for  the
transient solutions as well. By noting that the voltage across a capacitor is 

and  the  back  emf  across  an  inductance  is   it  is  possible  to  rewrite  the
Kirchhoff equations in terms of integral and differential  equations. I would like to
show in the following section that the same solutions can be obtained quite easily
using Laplace transform without going through the complex integral equations.

The Fourier transform of a non-periodic function does not always exist. For
example, consider the step function  u(t) :

This integral does not converge as the value of
u(t)  does  not  diminish  as  t  increases.  This
problem  can  be  resolved  by  adding  an
exponentially damping term to the integral. 

The Laplace transform is defined as the Fourier transform of    f(t) e-ct  :

Note  that  both   and  c  have  the  dimensions  of  frequency.  Defining  a  complex
frequency s = c + j   the Laplace transform of f(t) can be written as

The Laplace transform of the step function becomes, by direction integration,
1/s . This is defined at all values of the complex variable s except at s=0.  The Laplace
transform for commonly found functions are tabulated below.

1     t>0

0      t<0
0.5   t=0u(t) =



Table A : Laplace Transform of common functions

Function Analytical form Laplace transform
Step function u(t) 1/s

Exponential decay e-at u(t) 1/(s+a)
Damped oscillation e-at  sin( t)u(t) /[(s+a)2 + 2]

Delta Function (t) 1

From the definition of Laplace transform, some additive properties can
be observed. These can be summarised as :

Table B : Additive properties of Laplace Transforms

Operation Analytical form Laplace transform
Linearity f1(t) + f2(t) F1(s) + F2(s)

scale change f(at) (1/a).F(s/a)
Time shift f(t-a) e-as  F(s)

Convolution  f1()f2(t-)d F1(s) F2(s)
Derivative f /(t) sF(s) - f(0)
Integral  f()d F(s)/s
Damping e-at f(t) F(s+a)

Derivative of F -tf(t) F/ (s)
Integral of F f(t)/t s F(s) ds

It  is,   in principle,  possible  to integral  the Laplace transform to obtain the
original function f(t). However the most common practice is to first decompose the
Laplace  function  to  a  manageable  form  and  then  a  table  of  inverse  Laplace
transforms to obtain the desired function.  This would become clear when we apply
the Laplace transform to obtain solutions for some common network problems. 



System Analysis

 The basic differential equation for a capacitor  C passing a current  i(t) caused by a
terminal voltage v(t) is :

i(t) = C d[v(t)]/dt

Taking the derivative of the Laplace transform, we get

I(s)  = C[s V(s) - v(0) ]

and V(s) = I(s)/QC + v(0)/s   

The corresponding impedance function is 
Z(s) = dV(s)/dI(s) =  1/sC 

For an inductive element,
v(i) = L d(i(i)/dt

V(s) = L[sI(s) - i(0)]

The  corresponding impedance is :

Z(s) = V(s)/I(s) = sL

We can therefore do a network analysis in complex frequency domain by replacing
jL by sL and  jC by sC. 

Let us consider some problems of interest in shaping amplifiers. For simplicity
we consider only those problems where the initial condition is v(0)=i(0) = 0 for at
inductances and condensers for t < 0.

CR Differentiator:

Let  us consider  a  step function input  to  a  CR- Differentiator.  The transfer
function for the input to output is:

G(s) = R/[R+1/(sC)] where G(s) = Vout(s)/Vin(s).  

For a step input  Vin(s) = 1/s as can be seen in the table A. The output voltage across R
has a Laplace transform  

 Vout(s) =   G(s) .  Vin(s) =  sRC/(1+sRC) * 1/s =  1/(s+a) where a = 1/RC 

This has a solution ( from table A)   Vout(t) = e-at = e-t/RC u(t) 



Charge sensitive preamp

We now consider  the  charge  sensitive  preamplifier  with  CR feedback.  The input
current is  delta function (t)  with unit charge and the output is

Vout(s) = - Zout(s) * Iin(s) = -  R*( 1/sC)/(R + 1/sC) = -R/(1+sRC)  

By inverting the transform, we get vout(t) = -(1/C) * e-t/RC u( t )

CR-RC integrator

For CR-RC integrator, the transfer functions for the successive stages are:

G1(s) = R/(R+1/sC)
G2(s) = (1/sC)/(R + 1/sC) and
Vin(s) = 1/s for step input.

Consequently Vout(s) = RC/(1+sRC)2

To find the corresponding Laplace transform, we note that  Vout(s) is the derivative of
the function -1/(1+sRC). Consequently the output waveform in time domain is

Vout(t) = (t/RC) * e(-t/RC)

LC Circuit

For a step input to an C-(LR) circuit, the transfer function sis:

G(s) = (R+sL)/(R + sL + 1/sC) so that

vout(s) =  (s+R/l)/(s2 + S R/l + 1/LC)

The denominator is a quadratic function is s having complex roots at  -   j where
 = R/2L and    (LC) -½   . 

This has a solution of the form 

vout(t)    e-t cos(t) for t > 0  

which corresponds to an exponentially damped oscillation with frequency determined
by the LC time constant, with R providing the damping term.



 The transfer functions for practical systems using combinations of R,L,C can
often be expressed as the ratio of polynomials:

where  P(s) and  Q(s) are polynomials in s of order m and n respectively with real
coefficients. The roots of the polynomial  P(s) are called the zeroes of the Transfer
function  and  the  roots  of  the  denominator  Q(s) are  called  poles.  For  physical
solutions, mn, as otherwise the solution would be non-vanishing  as t .

When all the roots of the polynomial Q(s) are unequal,  F(s) can be expressed
in the form 

with a general solution  

vout(t) = kk exp(akt)

The coefficients  k can be calculated by evaluating the quantity  F(s)(s-ak) at s =
ak.
Thus each pole on the negative real axis  adds an exponentially decaying term to the
output. On the other hand, complex poles with -ve real component contribute to an
exponentially decaying oscillatory function. The special case of  p equal roots would

have an expansion term  (s-ak)-p  which has a solution 

vout(t)   t p exp(akt) 

which can be verified by taking a derivative of the Laplace Transform.
A program netview has been written to numerically find the coefficients  Ck

when the transfer denominator  Q(s) has distinct real roots or pairs of complex roots.
In  case  of  complex  roots  aj and  coefficient CjD,   then  corresponding  real
solution is 

v(t) = 2 eat [C cos(t) - D sin(t) ]

The program can also calculate the time dependence of the resultant pulse shape and
display it graphically on screen. Two equal roots are simulated by entering values that
are separated in real or complex plane by a few percent.
 



PROBLEMS FOR NETWORK ANALYSIS.
 

Preamp output into an amplifier

We now consider the more complicated case of preamplifier output  fed into a CR-RC
shaping network. By replacing the input waveform to :

Vin(s) = 1/(s+b)   where 1/b = RfCf  is decay time of the charge sensitive loop.

The Laplace transform of the output  waveform is :  

Vout(s) = sa / [(s+b)(s+a)2]

The  output waveform can be found in the inverse Laplace transform table1:
 

where A = a2/(a-b) and B = ab/(a-b)2. The output waveform has an additional slow
recovery time with a time constant e-bt  ( fig 10). 

Fig 10. Effect of tail in the input pulse

Let us consider a typical case when 1/a ~ 3s and 1/b ~ 50 s. This gives rise
to  a  10% negative  undershoot  which  decays  with  a  time constant  of  50  sec.  At
moderate count rates, there is a high probability that the second pulse would be riding
on top of the tail of the first pulse. This would result in a loss of resolution as the

1 A transfer function of the form (s+d)/[(s+a)(s+b)(s+c)] with three poles at s= -a,-b,-c can be 
decomposed in the form [ /(s+a) + /(s+b) + /(s+c)] having a solution v(t) = e-at + e-bt + e-ct. The 
linear dependence on t  arises as two of the poles coincide in this case due to equal time constants for 
the CR-RC network.  

CR-RC Shaping

output waveform

Input waveform

Output undershoot in the
absence of pole-zero
cancellation

 Input step function

e-t/RC



height of the second peak with respect to ground is reduced due to the undershoot in
the base line.

In order to remove the baseline undershoot, the pole (s+b) in the denominator
of the transfer function should be eliminated. This technique is known as  pole-zero
cancellation, and can be achieved by adding a fraction   of the input pulse to the
output of the first differentiator. This modifies the transfer function from  1/(s+a)  to 

[1/(s+a)  ] = (s+a+1/)/(s+a).

If  is chosen to be     = 1/(b-a) then the numerator of the Transfer function has a
zero  at s = - b which would cancel out the corresponding pole in the Denominator.
This method of removing the undershoot of the output waveform is known as Pole-
zero cancellation. Practical circuits for doing this are shown in fig 11.

Fig 11. Pole-zero network

For long time constants, the second circuit is favoured as it requires a modest value of
the circuit components.
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Generation of complex poles

The CR/RC networks would normally have only real poles on the negative axis. To
generate complex poles, one would require both L & C in the same loop. The need of
an  inductance  can  however  be  avoided  using  an  active  feedback  loop  using
operational amplifiers. 

Fig 12 shows an active filter amplifier with resistance and capacitances only.
The first op amp has infinite gain and the second acts as a buffer with unity gain. The
circuit  has  the  advantage  that  the  gain  can  be  varied  by  changing  the  coupling
resistance R3 which does not have any effect on the poles of the resultant filter.

Fig 12: Active filter amplifier unit

The voltage transfer function of the circuit is given as :

This has complex roots if  4R2C2 > R1C1

The active  filter  circuit  used in  ORTEC amplifiers,  shown in fig  13 is  known as
SALLEN-KEY Filter. For equal values of resistor and  capacitance, the network has
complex roots.
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Fig 13: Active filter amplifier unit ( ORTEC design)

Synthesis of an output pulse shape

The synthesis of an output waveform is generally done in two steps. First the
Fourier transform of the of the wave form is  made from which the Transfer function
H(s) can be obtained :

H(j)H(-j) = |F()2|

Secondly, H(s) is expanded in the form

H(s) = P(s)/Q(s)

where P(s) and Q(s) are polynomials. By more and more terms in the series, one can
get better approximations to the  final waveform. The real roots of the polynomial
Q(s) of the form (s-a) can be realised with an integrator [ with a negative root at a = -
1/RC].   A pair  of  self-conjugate  complex  roots  can  be  realised  with  active  filter
circuits mentioned above.

A Gaussian integrator plays a very special role in pulse formation due to its
narrow width and good signal-to-noise ratio. One way of achieving it is to use a RC
differentiator  followed by an  infinite  series of CR integrators.  The corresponding
transfer function is

as m   . The convergence is however very small requiring a

very large number of integrator elements.
Ohkawa et al [Nucl. Instr.  Meth 138(1976)85 ] have described a truncation

scheme where the shaping function corresponds to differentiator followed by a series



of active integrators with complex poles. The locations of the poles are tabulated as
follows:

Number of
poles

Differentiator
pole

Active Integrator poles
Real part Imaginary part

3 -1.263 -1.149 0.786
5 -1.477 -1.417

-1.204
0.598
1.299

7 -1.661 -1.623
-1.495
-1.234

0.501
1.045
1.711

4 
( Ortec design)

-1.0 -3.0
-1.0

0.
0.8

 An  inspection  of  the  table   indicates  that  the  imaginary  poles  are  approximate
multiples of each other. Thus the undershoot created by the first oscillatory term is
compensated by the higher harmonics. The output waveforms, generated by netview,
are shown  in fig 14. It can be seen that with an increasing number of poles, the output
waveform approaches Gaussian form with nearly symmetric shape. For comparison,
the active filter unit used by ORTEC is composed of a differentiator, an RC integrator
and an active integrator with complex poles. 





Fig 14. Pseudo-Gaussian Line shapes  for filters of various order

Apart from (CR)n integrator network, there is another class of network known
as sine network having the output waveform:

F(t) = e-3t (sin t)n



The waveform is that of a highly damped sine wave raised to the nth power, where n
is the number of low pass sections contained in the network. The damping is so large
that  only  the  first  half  cycle  is  significant,  and  the  next  half  cycle  is  lower  in
amplitude by a factor of ~ 10-4. 

A Quasi-Triangular waveform can be generated by adding three sine components :

F(t) = e-3t [7.64 sin2t + 2.53 sin4t + 37.74sin6t]

This has poles at -3, (-32 j ), (-34 j ), (-36 j ) respectively. The shape is obtained
by summing fractions of the outputs from several active integrators that make up the
basic network. The waveforms for  individual components are shown in fig 13. The
slow rise for the first term is compensated by the fast rise from the first term.

Fig 15 Quasi-Triangular Wave shape with sin2 ( ), sin4(---),
sin6 (- - -)   and sum  ()


